
CS-202 Exercises on I/O and Scheduling (L08 - L09)
24.03.2025

This exercise set covers concepts related to I/O and scheduling. We advise that you
work through it sequentially, referring back to lecture slides or videos as necessary. If
anything is unclear, or if you could benefit from discussing a particular concept in depth,
please seek an assistant’s help.

Exercise 1: CPU-device communication through interrupts

The CPU interacts with I/O devices through interrupts: When the CPU runs a thread that
needs I/O, the CPU requests an I/O operation and switches to another thread, while
waiting for the I/O operation to complete. When the device completes the operation, it
generates an interrupt; the OS handles the interrupt by processing the data and
resuming the original thread (or setting its status to Ready).

The diagram below illustrates this interaction in the particular scenario where the device
is a disk. Letters A, B, and C represent threads. Numbers 1, 4, and 5 represent events
initiated by the CPU, whereas numbers 2,3,6, and 7 represent events initiated by the
disk. The diagram shows which thread the CPU and the disk are working for at each
point in time. E.g., before event 1 the CPU is working for thread A, but after event 1 it is
working for thread B.

Connect each event on the left to a description on the right:

1.

a.​ The device driver (operating on behalf of
thread A) copies the data to a
memory-mapped or IO-mapped data
register.

2.
b.​ The disk sends an interrupt to the CPU,

signaling that it has completed the
requested I/O operation.

3.
c.​ Thread A makes a write() system call.

The OS puts the thread in the Blocked
state

4.
d.​ The disk begins the requested I/O

operation

5.
e.​ The device driver writes a command to a

control register to initiate the I/O operation.

6.
f.​ The disk completes the previous I/O

operation and sends an interrupt to signal
the CPU that it is now available.

7.

Solution:

1 c – Thread A makes a write() system call. The OS puts the
thread in the Blocked state

2 d – The disk begins the requested I/O operation

3 f – The disk completes the previous I/O operation
and sends an interrupt to signal the CPU that it is
now available.

4 a – The device driver (operating on behalf of
Thread A) copies the data to a
memory-mapped or IO-mapped data
register.

5 e – The device driver writes a command to a
control register to initiate the I/O operation.

6 d – The disk begins the requested I/O
operation

7 b – The disk sends an interrupt to the CPU,
signaling that it has completed the requested I/O
operation.

Exercise 2: Direct Memory Access (DMA)

The diagram below illustrates data transfer between disk and memory using Direct
Memory Access (DMA).

Connect each step on the left to a description on the right:

1. a.​ CPU tells device driver to transfer disk
data to buffer at address X

2. b.​ When C = 0, DMA interrupts CPU to signal
transfer completion

3. c.​ DMA controller transfers bytes to buffer X,
increasing memory address and
decreasing until C = 0

4. d.​ Disk controller sends each byte to DMA
controller

5. e.​ Device driver tells disk controller to transfer
C bytes from disk to buffer at address X

6. f.​ Disk controller initiates DMA transfer

Solutions
1.​ a. CPU tells device driver to transfer disk data to buffer at address X
2.​ e. Device driver tells disk controller to transfer C bytes from disk to buffer at

address X
3.​ f. Disk controller initiates DMA transfer
4.​ d. Disk controller sends each byte to DMA controller
5.​ c. DMA controller transfers bytes to buffer X, increasing memory address and

decreasing until C = 0
6.​ b. When C = 0, DMA interrupts CPU to signal transfer completion

Exercise 3: I/O operations and system calls

The following is a C program that reads a text file (text.txt), counts the number of lines and
vowels, and then writes the results to an output file out.txt.

#include <stdio.h>​
#include <ctype.h>​
​
#define BUFFER_SIZE 4096​
​
// Function to count vowels in a buffer​
int count_vowels(const char *buffer, size_t size) {​
 int count = 0;​
 for (size_t i = 0; i < size; i++) {​
 if (strchr("AEIOUaeiou", buffer[i])) {​
 count++;​
 }​
 }​
 return count;​
}​
​
int main() {​
 char buffer[BUFFER_SIZE];​
 int total_lines = 0, total_vowels = 0;​
​
 FILE *src = fopen("text.txt", "r");​
​
 size_t bytes_read;​
 while ((bytes_read = fread(buffer, 1, BUFFER_SIZE, src)) > 0) {​
 total_vowels += count_vowels(buffer, bytes_read);​
 for (size_t i = 0; i < bytes_read; i++) {​
 if (buffer[i] == '\n') total_lines++; // Count lines​
 }​
 }​
 fclose(src);​
​
 FILE *dest = fopen("out.txt", "w");​
 if (!dest) { perror("Error opening file"); return 1; }​
 fprintf(dest, "Lines: %d\nVowels: %d\n", total_lines, total_vowels);​
 fclose(dest);​
​
 return 0;​
}

Questions:

1.​ Identify the calls that result in I/O operations and the corresponding syscalls (if
any). Write each call to a cell in the first column of the table below.

2.​ Does your answer to the above question change if text.txt is already in the file
system buffer cache?

3.​ For each call mentioned in your answer to Question 1, indicate which system
layers it “touches” by adding an X to the corresponding cell of the same row..

Operation Application Library File system Block device interface Physical device
fopen

 ​

Solutions:
Operati
on

Applicati
on

Librar
y

File
system

Block device
interface

Physical
device Explanation

fopen(
"text.
txt",
"r")

X X X X X (unless
cached)

Open a file
for reading.
Internally
uses
open()
syscall.
Touch
everything
down to disk
unless
cached.

fread(
buffer
, ...)

X X X X X (unless
cached)

Reads file
contents into
memory
using
read()
syscall.

Operati
on

Applicati
on

Librar
y

File
system

Block device
interface

Physical
device Explanation

Touch
everything
down to disk
unless
cached.

fclose
(src)

X X X Flushes and
closes file
descriptor.
Only affects
file system
metadata.

fopen(
"out.t
xt",
"w")

X X X X X Opens/creat
es file for
writing.
Touches all
layers
including
disk for
inode + file
allocation.

fprint
f(dest
, ...)

X X X X X Writes to the
file with
write()
system call.

fclose
(dest)

X X X X X Flushes the
output buffer
to file using
write(),
closes the
file
descriptor.

perror
(...)

(optiona
l, unless
out.txt
doesn’t
exist)

X X X X X Optional –
only runs if
fopen(out.
txt) fails.
Writes an
error
message to
stderr.

Exercise 4: Context switching

Consider the following program:

#include <stdio.h>
#include <unistd.h>
#include <sys/wait.h>

int main() {
 int pid = fork();

 if (pid == 0) {
 // Child process
 sleep(1);
 } else if (pid > 0) {
 // Parent process
 printf("Parent process\n");
 waitpid(pid, NULL, 0);
 }

 return 0;
}

Questions:

1.​ What is the state of the child process:
a.​ Right before it calls sleep(1)
b.​ Right after it calls sleep(1)
c.​ After it finishes sleep(1)

2.​ Identify the calls that result in a context switch and list them in the first column of
the table below. Next to each call, indicate what triggers the context switch
(system call, I/O, or voluntary yield).

Call Trigger Type

Solutions:
1.​ What is the state of the child process:

a.​ Right before it calls sleep(1): Running
b.​ Right after it calls sleep(1): Blocked
c.​ After it finishes sleep(1): Ready

 2. Identify the calls that result in a context switch and list them in the first column of the
table below. Next to each call, indicate what triggers the context switch (system call, I/O,
or voluntary yield).

Call Trigger Type

fork() System call

sleep(1) Voluntary yield

waitpid(...) System call

printf(...) I/O*

*In reality, printf() does not necessarily cause a context switch unless it blocks (e.g.,
full output buffer or slow terminal), which isn't guaranteed.

Exercise 5: Basic questions on scheduling

1.​ Why might a thread not give up the CPU even when other threads are waiting to
run? (Give 2 reasons)

2.​ How does the OS reduce the risk of this situation happening and ensure it can
take back control when needed?

3.​ Why is it important for a scheduler to distinguish between threads that mostly
perform CPU-intensive computation (“CPU-bound”threads) and threads that
mostly perform I/O (“I/O-bound” threads)?

Solutions:

1.​ Why might a thread not give up the CPU even when other threads are waiting to
run? (Give 2 reasons)

1)​ It’s poorly written or buggy and never gives up.
2)​ It’s doing long CPU-intensive work without giving up.
3)​ It’s malicious and intentionally refuses to yield to starve other threads

2.​ How does the OS reduce the risk of this situation happening and ensure it can
take back control when needed?

1)​ Uses preemptive scheduling with timer interrupts.
2)​ Takes back control automatically when a time slice ends.

3.​ Why is it important for a scheduler to distinguish between threads that mostly
perform CPU-intensive computation (“CPU-bound”threads) and threads that
mostly perform I/O (“I/O-bound” threads)?

1)​ To improve responsiveness (I/O-bound threads get quick CPU bursts).
2)​ To maximize CPU usage while I/O-bound threads are blocked.

Exercise 6: FIFO and SJF scheduling

1.​ Give one example of a First In First Out (FIFO) scheduler from daily life.

2.​ Consider the following thread arrival pattern:

Arrival Time Length

0 10

1 2

5 20

11 5
 ​

 ​ Answer the following questions, first assuming a FIFO scheduler, ​
then a Shortest Job First (SJF) scheduler:

a.​ When will the CPU finish executing all threads?
b.​ What is the average turnaround time?
c.​ What is the average response time?

Solution:

1.​ For example, waiting in line at a student restaurant

FIFO

Thread Start End Turnaround Time = End -
Arrival

Response Time = Start -
Arrival

T1 0 10 10 0

T2 10 12 11 9

T3 12 32 27 7

T4 32 37 26 21

a.​ Finish time: 37​

b.​ Average turnaround time: (10 + 11 + 27 + 26) / 4 = 18.5​

c.​ Average response time: (0 + 9 + 7 + 21) / 4 = 9.25

SJF

Thread Start End
Turnaround Time
= End - Arrival

Response Time
= Start - Arrival

T1 0 10 10 0

T2 10 12 11 9

T4 12 17 6 1

T3 17 37 32 12

a.​ Finish time: 37​

b.​ Average turnaround time: (10 + 11 + 6 + 32) / 4 = 14.75​

c.​ Average response time: (0 + 9 + 1 + 12) / 4 = 5.5

Exercise 7: MLFQ Scheduling
Consider a Multi-Level Feedback Queue (MLFQ) scheduler ​
with the following properties:

●​ Three priority levels, with the following time slices:
o​ Level 1 (Highest Priority): 1 tick per time slice
o​ Level 2 (Medium Priority): 2 ticks per time slice
o​ Level 3 (Lowest Priority): 4 ticks per time slice

●​ Priority adjustment rules:

o​ When a new thread arrives, it starts in Level 1.
o​ If a thread uses up its time slice, it moves to one level below.
o​ Every 10 ticks (so, at tick 10, 20, 30, etc) all threads are boosted to Level

1.
o​ If a thread is blocked waiting for I/O, it does not consume CPU time and

resumes execution after the I/O operation completes.

Consider the following arrival pattern: :

Thread ID Arrival Time Length

0 0 7

1 0 3

2 3 6

3 3 0.99 + I/O for 4 + 5

Questions:

1.​ For each time tick, which thread is executed and at which priority level?
a.​ When does thread 3 resume execution after being blocked for I/O?
b.​ How does priority boosting after 10 ticks affect the execution order?
c.​ How does MLFQ balance short threads vs. long-running threads?

2.​ If a thread repeatedly performs I/O and avoids long CPU bursts, how does MLFQ
treat it compared to CPU-bound threads?

Solutions

1.​ For each time tick, which thread is executed and at which priority level?

Tick Thread Running Priority Level Notes

0 0 1 Thread 0 starts

1 1 1 Thread 1 starts

2 0 2

3 0 2

4 2 1 Thread 2 starts

5 3 1 Thread 3 starts (will
enter I/O)

6 1 2

7 1 2 T1 finishes

8 2 2

9 2 2

10 0 1 Priority boosting
applied

11 2 1

12 3 1

13 0 2

14 0 2

15 2 2

16 2 2 T2 finishes

17 3 2

18 3 2

19 0 3 T0 finishes

20 3 1 Priority boosting
applied

21 3 2 T3 finishes

a.​ When does thread 3 resume execution after being blocked for I/O?

 →Thread 3 runs for 1 tick at tick 5, then blocks for I/O. It stays blocked for
4 ticks. After that, it resumes running at tick 12.

b.​ How does priority boosting after 10 ticks affect the execution order?
→ After 10 ticks, the system boosts all threads that haven't run recently
back to the highest priority level. This gives them a better chance to run
soon, even if they were in a low-priority queue before.

c.​ How does MLFQ balance short threads vs. long-running threads?

→ MLFQ gives short threads more chances to run by keeping them in
higher priority levels. Long-running threads get moved to lower levels, so
they have to wait longer. This helps short threads finish quickly.

2. If a thread repeatedly performs I/O and avoids long CPU bursts, how does MLFQ
treat it compared to CPU-bound threads?

→ A thread that does I/O often and doesn’t use much CPU time stays in high priority. It
runs more often than CPU-heavy threads, which get moved to lower levels. This makes
the system more responsive for I/O tasks.

	CS-202 Exercises on I/O and Scheduling (L08 - L09) 24.03.2025
	Exercise 1: CPU-device communication through interrupts
	Exercise 2: Direct Memory Access (DMA)
	Exercise 3: I/O operations and system calls
	
	Exercise 4: Context switching
	
	
	
	Exercise 5: Basic questions on scheduling
	
	Exercise 6: FIFO and SJF scheduling
	
	
	

	Exercise 7: MLFQ Scheduling

